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The Casimir force . Los Alamos

Casimir forces originate from changes in quantum
vacuum fluctuations imposed by surface boundaries

They were predicted by the Dutch physicist Hendrik
Casimir in 1948

Dominant interaction in the micron and sub-micron
lengthscales
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Casimir forces originate from changes in quantum
vacuum fluctuations imposed by surface boundaries

They were predicted by the Dutch physicist Hendrik
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Dominant interaction in the micron and sub-micron
lengthscales
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Classical Analog: LAlbum du Marin (1836)




Relevant applications
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B Gravitation / Particle theory:

Some theories of particle physics predict deviations from the
Newtonian gravitational potentials in the micron and submicron range

The Casimir force is the main background force to measure these

non-Newtonian corrections to gravity
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B Quantum Science and Technology:

Atom-surface interactions

Precision measurements

Example: Casimir-Polder interaction between a BEC and a surface

E. Cornell et al, Phys. Rev. Lett. 98,063201 (2007)
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Relevant applications

NATIONAL LABORATORY

Nanotechnology:

Problems with stiction of
movable parts in MEMS

“pull-in” effect

Zhao et al, Adhesion Sci.
Technol. 17,519 (2003)

Actuation in NEMS and MEMS
driven by Casimir forces
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Modern experiments
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@ Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux
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@ Torsion pendulum B Atomic force microscope
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Capasso, Decca Onofrio
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Tailoring the Casimir force + Los Alamos

B The magnitude and sign of the Casimir force depend on
the geometry and composition of surfaces

Engineer geometries and designer materials for various applications:

* Demonstration of strongly modified/repulsive Casimir forces

* Demonstration of vacuum drag via lateral Casimir forces

B From ideal to real materials: The Lifshitz formula
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Dominant frequencies in the near-infrared/optical
region of the EM spectrum (gaps d= 200-1000 nm)



The Lifshitz formula *Losplames
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B |deal attractive limit
Casimir 1948 : :
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A 240 d4
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B |deal attractive limit
Casimir 1948 : :
F_ ™ he
A 240 d4
B Ideal repulsive limit
Boyer 1974
F_ 7T @ he $ >
A 8 240 d4

B Real repulsive limit
Casimir repulsion is associated with strong
electric-magnetic interactions. However, natural
occurring materials do NOT have strong
magnetic response in the optical region,i.e. © =1
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B |deal attractive limit
Casimir 1948 : :
F_ ™ he
A 240 d4
B Ideal repulsive limit
Boyer 1974
F_ 7T @ he $ >
A 8 240 d4

B Real repulsive limit
Casimir repulsion is associated with strong

electric-magnetic interactions. However, natural —5 Metamaterials
occurring materials do NOT have strong

magnetic response in the optical region,i.e. © =1
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Transformation media Leonhardt et al, NJP 9, 254 (2007)

Perfect lens: EM field in -b<x<0 is mapped into

x’. There are two images, one inside the device
and one in b<x<2b.
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Transformation media Leonhardt et al, NJP 9,254 (2007)

Perfect lens: EM field in -b<x<0 is mapped into
x’. There are two images, one inside the device
and one in b<x<2b.

Casimir cavity:  a' = |a — 2b|

When a< 2b (plates within the imaging range of
the perfect lens)

oU 0Oa’ h 2

=> f= “5d 90 24007 => Repulsion
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Transformation media Leonhardt et al, NJP 9, 254 (2007)

Perfect lens: EM field in -b<x<0 is mapped into

x’. There are two images, one inside the device
and one in b<x<2b.

Casimir cavity:  a' = |a — 2b|

When a< 2b (plates within the imaging range of
the perfect lens)

oU 0Oa’ h 2

=> f= “5d 90 24007 => Repulsion

For real materials, however .....

e According to causality, no passive medium (€’ (w) > 0) can sustain €, u ~ —1
over a wide range of frequencies. In fact, (&), u(¢§) >0

e Leonhardt proposes to use an active MM (€’ (w) < 0) in order to get
repulsion. But then the whole approach breaks down, as real photons would
be emitted into the quantum vacuum.
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B Drude-Lorentz model:
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A slab made of Au (p = 19.3 gr/cm?) of width § = 1um could levitate in
front of one of these MMs at a distance of d ~ 110 nm !!!

Casimir and metamaterials Henkel et al, EPL 72,929 (2005)

Casimir and surface plasmons  Lambrecht et al, PRL 94, | 10404 (2005)
van der Waals in magneto-dielectrics Dalvit et al, PRA 75,052117 (2007)
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[J Metamaterials can strongly influence the quantum
vacuum, providing a route towards quantum levitation.

[J Build MMs with strong magnetic response at
infrared-optical frequencies, corresponding to gaps
between 200 nm and |0 microns.

[J Validity of the continuum description? Extensions of
Lifshitz formula to periodic structures...

[J Fabrication of MMs on torsion pendulum plane or on
oscillating MEMS/NEMS

(] Similar issues apply to tailored plasmons, e.g. SAA




Invisibility by design

Review article by Steve Lamoreaux on page 40:

“Casimir forces: still surprising after 60 years”




